CYCLIZATION AND HYDROXYLATION STEREOCHEMISTRY IN THE BIOSYNTHESIS OF GIBBERELLIC ACID

RAYMOND M. DAWSON, PHILLIP R. JEFFERIES and JOHN R. KNOX

Department of Organic Chemistry, University of Western Australia, Nedlands, 6009, Australia

(Received 11 April 1975)

Key Word Index—Gibberella fujikuroi, ent-[3β-3H,17-14C]kaurene, gibberellic acid

Abstract—In Gibberella funkuroi cultures, ent- $[3\beta^{-3}H,17^{-14}C]$ kaurene is converted to gibberellic acid with retention of the tritium label at the 3α -position. This evidence for the stereochemistry of 3-hydroxylation also permits the stereochemistry of the 'proton-initiated' cyclization step in gibberellic acid biosynthesis to be deduced.

INTRODUCTION

The biosynthesis of GA (4a) in Gibberella fujikuroi (Scheme 1) [1,2] has separate steps for the cyclization of the polyene precursor (geranylgeranyl pyrophosphate) and for the introduction of the 3-hydroxyl group According to biogenetic theory [3], in the cyclization step a hydrogen from the biological medium is introduced at the 3-position

HO₂C
$$H_3$$
C OH CH_2OH CH_2OPP

Mevalonic acid (1)
 $(3a) R = {}^{1}H$
 $(3b) R = {}^{3}H$
 (2)
 $(4a) R = {}^{1}H$

Scheme 1 Intermediates in the biosynthetic pathway to gibberellic acid

of copalyl pyrophosphate (2) [and ultimately of ent-kaurene (3a)] whereas the other 3-hydrogen derives from the 4-pro-R hydrogen of mevalonic acid [4]. Hanson and White [5] have observed that GA derived from 4R[4-3H.2-14C] mevalonic acid in G. fujikuroi has 3H labels at the 5and the 9-positions but not at the 3-position (or the 13-position) whereas ent- 7α -hydroxykaurenoic acid $19 \rightarrow 6$ lactone and ent- 7α , 18-dihydroxykaurenoic acid 19→6 lactone have the full complement of ³H labels (four) to be anticipated from cyclization without loss of label. This shows that the conversion of ent-kaurene into GA involves loss of the label at the 3-position but the stereochemistry of the cyclization and hydroxylation steps remain unidentified.

In this paper we are able to define the stereochemistry of these steps from our observations using ent-[3 β -3H,17-14C] kaurene as a precursor of GA.

DISCUSSION

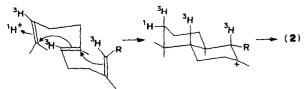
ent- $[3\beta^{-3}H]$ Kaurene (**3b**) was prepared by an unexceptional route in which the stereospecific labelling was introduced through LiAlH₄ reduction of the ³H-tosylate (**6c**). The labelled tosylate was obtained from the previously-described acetonide derivative [6] ent- 3β , 16β , 17-trihydroxy-kaurane (**5a**) by oxidation to the ketone (7) fol-

lowed by reduction with NaB³H₄ This formed almost entirely the equatorial alcohol (**5c**) which was then converted to the labelled tosylate (**6c**) before purification was carried out

In trial experiments with the unlabelled tosylate (6a), LiA1H₄ treatment was found to give not only the required product of reductive displacement of the tosyloxy group (8a) but also the products of reductive hydrolysis and elimination (5a and 9a respectively). Whereas 5a was readily separated from the mixture for identification, 8a and 9a were recovered only in admixture, their identification rests on NMR spectral and TLC (Si gel-AgNO₃) comparison with the product of dehydration of the alcohol (5a) and the product of further catalytic hydrogenation. For the purpose of obtaining the 3H-labelled saturated compound (8c), the corresponding mixture from reduction of the labelled tosylate (6c) was treated with excess diborane and then oxidized with H₂O₂. This converted the unsaturated compound (9b) completely to a mixture of alcohols which were then readily removed by chromatography

affording the required labelled compound (8c) in pure form.

The label in this compound is assigned to the 3α -position (ent-3 β) because LiAlH₄ reductions of sulfonate esters are known to proceed predominantly or exclusively by rearside attack of the reagent at the centre of displacement [7-9]. Furthermore, the corresponding reductive displacement of the tosyloxy groups of **6b** and **6a** using LiAlH₄ and LiAl²H₄ respectively gave deuterated species (**8b** and the 3-epimer) which had IR characteristics indicative of [9] equatorially-located (C-D stretch 2145 cm⁻¹) and axially-located (C-D stretch 2125 cm⁻¹) D atoms with essentially no intermixing; this is in accord with the stereospecific labelling that was expected.


Oxidation of the 3H-labelled compound (8c) with Jones reagent produced the norketone (10) which was transformed into the required ent -[3 β - 3 H] kaurene (3b) by reaction with triphenylmethylene phosphorane. Admixture with ent-[17- 1 C] kaurene then gave a doubly-labelled sample (3 H. 1 C = 150). The radiochemical purity of this material was demonstrated by scanning TLC and of the product of isomerization with I_2 - C_6 H $_6$ [10, 11]. The product from isomerization showed the anticipated two radioactive areas (ent-kaurene and the Δ^{15} -isomer) which had, as required, unchanged 3 H. 14 C ratios.

The ent- $[3\beta-^3H, 17-^{14}C]$ kaurene sample was added to a culture of G fujikuroi and after 45 days GA was recovered from the medium as the methyl ester. The ³H ¹⁴C ratio of this material (140) showed that more than 93° of the 3H was retained in the metabolic conversion to GA Furthermore, this label was located almost entirely at the 3-position because MnO₂ oxidation of the labelled ester afforded the ketone (11) which had essentially no ${}^{3}H$ (${}^{3}H$ ${}^{14}C = 0.4$) This shows that the 3γ -hydrogen (ent- 3β) of ent-kaurene retains its position in the metabolic conversion to GA, the departures from ideal ³H ¹⁴C ratios are presumably due to counting maccuracies and incomplete specificity of labelling in the chemical synthesis of the precursor

Several lines of evidence suggest that in the biosynthetic pathway to GA [1,2] a 3-hydroxyl group is introduced by the conversion of GA_{12} to GA_{14} (possibly as the 7-aldehydes). Direct hydroxylations of this type typically proceed with

retention of configuration at the substituted carbon [12, 13a] and apparent exceptions to this rule in the elaboration of the allylic alcohol grouping of lycorine [14] and in the introduction of the 14-hydroxyl group of cardenolides [15] may involve different mechanisms. The above evidence for retention of configuration in forming GA is thus in accord with the suggested biosynthetic pathway; furthermore this evidence excludes the possibility of intervention of 3-keto intermediates and related species which would lead to loss of the 3 H label from the ent-[3 β - 3 H,17- 14 C]kaurene precursor.

The evidence for retention of configuration in the hydroxylation also permits an assignment for the stereochemistry of the cyclization of geranylgeranyl pyrophosphate leading to copalyl pyrophosphate (2) and ent-kaurene (3). Because the H derived from the 4- pro R position of mevalonic acid is lost in the conversion of ent-kaurene into GA [5], it follows that this H adopts the 3β -position in 2 and 3. Furthermore, it is known that C-18 of GA derives from C-2 of mevalonic acid [16] and the best interpretation of the available evidence is that it is this C atom which is the source of the trans-Me group of the terminal isopropylidene group of polyene isoprenoid intermediates [13b]. Consequently, the cyclization of geranylgeranyl pyrophosphate in this pathway must result from antiplanar addition to the terminal double bond with the polyene in an incipient chair conformation for the A-ring (Scheme 2).

Scheme 2 A-ring stereochemistry in the cyclization of geranylgeranyl pyrophosphate derived from [4R-3H]mevalonic acid

Proton-initiated cyclizations are postulated for the biosynthesis of a wide range of other terpenoids [17] and the theory of these cyclizations [18] predicts antiplanar addition pathways but evidence for the stereochemistry of these conversions has been lacking until this time.

EXPERIMENTAL

General procedures have been described [19]l Ir spectra were measured in CS₂ solns

ent-16 β ,17-Isopropylidenedioxy-3 β -tosyloxykaurane (6a). Tosyl chloride (2 g) was added to ent-16 β ,17-isopropylidenedioxykauran-3 β -ol (5a, 766 mg) in C₅H₅N (12 ml) After 22 hr, ice was added and the mixture worked up in the usual way to give the tosylate (6a, 1.01 g) which crystallized from petrol as needles; mp 148-148·5° (d) [α]_D -36.9° (Found: C, 69.4, H, 8.4, S, 6.3 C₃₀H_{4 α}SO₅ requires C, 69.7, H, 8.6, S, 6.2%) PMR (δ), s at 0.78 (6H), 1.00 (3H), 1.34 (6H), 2.42 (3H); AB q at 3.86, 4.01 (J.9 Hz), hr t at 4.18 (1H)

LIAlH₄ reduction of ent-16 β ,17-isopropylidenedioxy-3 β -tosyloxykaurane (**6a**) The tosylate (**6a**, 75 mg) was reduced with LiAlH₄ in refluxing solvent (10 ml) in the various ways summarized in the following table

Solvent	Molar ratio (LıAlH ₄ . 6a)	Time (hr)	% Yield		
			'Hydrocarbon'	6a	5a
Dioxan	5 1	18	69		12
	1.1	35	63	30	1
THF	20 1	66	28		48
	5 1	42	34	23	20
	1 1	84	45	44	5

The product was separated by chromatography on Al_2O_3 into a 'hydrocarbon' fraction, ent- 16β ,17-isopropylidenedioxy-kauran- 3β -ol (5a) and (in some cases) unreduced material. The 'hydrocarbon' fraction from reactions with THF solvent was a mixture of the saturated and unsaturated acetonides (8a) and (9a) which ranged in proportion from very little of 8a with the equimolar quantity of LiAlH₄ up to ca 2 3 with the 4-fold excess of LiAlH₄ (NMR, TLC). Several additional substances were present in the 'hydrocarbon' fraction from the reactions in dioxan solvent.

ent-16 β ,17-Isopropylidenedioxykaur-2-ene (9a) Phosphorous oxychloride (1 ml) was added carefully to a cooled soln of ent-16 β ,17-isopropylidenedioxykauran-3 β -ol (5a, 920 mg) in C₅H₅N (18 ml) After 16 hr at room temp, the soln was heated with steam for 1 hr then cooled and poured onto ice After the usual workup the recovered material was chromatographed on Al₂O₃ to give ent-16 β ,17-isopropylidenedioxykaur-2-ene (9a, 601 mg) which crystallized from MeOH as needles, mp 131-2°, [α]_D -618° (Found C, 799, H, 103 C₂₃H₃₆O₂ requires: C, 802, H 105%) PMR (δ): s at 0.89 (3H), 0.96 (3H), 1.05 (3H), 1.39 (6H); AB q at 3.94, 4.08 (J.9 Hz), br 5.42 (2H, W₄, 3.5 Hz)

ent-16 β ,17-Isopropylidenedioxykaurane (8a) ent-16 β ,17-Isopropylidenedioxykaur-2-ene (9a, 289 mg) in HOAc (25 ml) was hydrogenated over Adam's catalyst for 3 days After filtration and evaporation of the solvent, the residue was filtered through Al₂O₃ in petrol The product, ent-16 β ,17-isopropylidenedioxykaurane (8a, 285 mg) crystallized from MeOH as needles, mp 125 6°, [α]_D -40 3° (Found C. 79 4, H. 11 0 C₂₃H₃₈O₂ requires. C, 79 7, H, 11 1%) PMR (δ) s at 0.80 (3H), 0.84 (3H) 1.01 (3H), 1.36 (6H), AB q at 3.88 4.04 (J. 9 Hz).

ent-[3β-³H]-16β,17-Isopropylidenedioxykaurane (8c) [³H]-NaBH₄ (19 mg, 5 mC₁) was added to a dil soln of NaBH₄ in diglyme (2 mM, 2 ml) An aliquot (1 ml) of this soln was added to ent-16β,17-isopropylidenedioxykauran-3-one (7, 41 mg), the soln stood for 1 hr at room temp and then heated for 1 hr at 100° To ensure complete reduction, 0 1 M NaBH₄ in diglyme (0 6 ml) was then added and heating continued for 1 hr at 100° Excess NaBH₄ was destroyed by the addition of H₂O and HOAc and the reaction mixture

then diluted with H₂O and extracted 2× with Et₂O. Combined Et₂O extracts were washed with dil NaHCO₃ soln. dried and evaporated to give a residue (2.52×10^9 dpm) which showed one radioactive spot corresponding with ent-16β,17isopropylidenedioxykauran-3 β -ol (5a) on TLC. This material was diluted with the unlabelled alcohol (5a, 75 mg) and converted to the tosylate (6c) as for the unlabelled substance (above). The product was chromatographed on Al₂O₃ and crystallized to give pure ent-[3α-3H]-16β.17-isopropylidenedioxy-3 β -tosyloxykaurane (6c. 147 mg. 2.1×10^9 dpm). The labelled tosylate was then reduced with LiAlH₄ (56 mg) in refluxing THF (2 ml) for 5½ days. The product was chromatographed on Al₂O₃ and a mixture of the labelled saturated and unsaturated acetonides (8c. 9b; 3.1×10^7 dpm) recovered by elution with petrol; further elution with Et₂O yielded the labelled alcohol (5c) and a small amount of the labelled tosylate (6c). The Et₂O fraction was treated with tosyl chloride to regenerate the tosylate which was again reduced with LiAlH₄ in THF. This cycle was repeated several times to give a combined 'hydrocarbon' fraction (8c, 9b: 1.3×10^9 dpm) and a residual alcohol fraction (5c, 4.1×10^8 dpm). The 'hydrocarbon' fraction was dissolved in THF and treated with externally-generated diborane for 1 hr. H₂O was then cautiously added followed by 1 M NaOH and 30% H₂O₂. The mixture was stirred for 2 hr at room temp, and then worked up in the usual way and the product chromatographed on Al₂O₃. action eluted with petrol was identified as ent- $[3\beta-^3H]$ -16 β .17isopropylidenedioxykaurane (8c. 35 mg. 3.6×10^8 dpm) from the PMR spectrum and TLC comparison (Si gel-AgNO₃). No unsaturated compound (9b) remained. Elution of the column with Et₂O gave a mixed alcohol fraction (69 mg. 8.7 × $10^{8} \, \text{dpm}$).

Preparation of deuterated compounds, ent-16β,17-Isopropylidenedioxykauran-3-one (7, 235 mg) was reduced with [²H]-LiAlH₄ (90 mg) in refluxing Et₂O (8 ml) for 2 hr. The crude product (239 mg) was converted to the toxylate (6b, 329 mg) as for the unlabelled material; this compound was identified by the TLC and PMR. It was then reduced with LiAlH₄ and the mixture of products separated as for the ³H-labelled compound to give ent-[3β-²H]-16β,17-isopropylidenedioxy-kaurane (8b, 53 mg), ν_{max} 2145 cm⁻¹ (equatorial C-²H stretch), ent-16β,17-Isopropylidenedioxy-3β-tosyloxykaurane (6a, 337 mg) was similarly converted by reaction with [²H]-LiAlH₄ into ent-[3x²H]-16β,17-isopropylidenedioxykaurane (3-epimer of 8b, 44 mg), ν_{max} 2125 cm⁻¹ (axial C-²H stretch), ent-[3β-³H]-17-Norkauran-16-one (10), ent-[3β-³H]-16β,17-

ent- $[3\beta^{-3}H]$ -17-Norkauran-16-one (10). ent- $[3\beta^{-3}H]$ -16 β ,17-Isopropylidenedioxykaurane (8c. 17·5 mg. 1·8 × 10⁸ dpm) from the above preparation was dissolved in Me₂CO (10 ml) and oxidized with Jones reagent (0·5 ml) for 2 hr. Chromatography of the product on Al₂O₃ afforded nor-ketone (10. 10 mg. 1·7 × 10⁸ dpm) which was identified by TLC and NMR comparison [20]. Oxidation of a second batch of 10 yielded further labelled nor-ketone (4 mg. 6·5 × 10⁷ dpm). The radiochemical homogeneity of this material was demonstrated by dilution of an aliquot (1·5 × 10⁶ dpm) with unlabelled nor-ketone (109 mg). The sp act was essentially unchanged after 2 crystalizations from aq. MeOH.

lizations from aq. MeOH. ent- $[3\beta^{-3}H.17^{-14}C]$ Kaur-16-ene $(17^{-14}C$ -labelled 3b). The 3 H-labelled nor-ketone (10. $2\cdot 3\times 10^8$ dpm) in dry Et₂O (20 ml) was added under N₂ to a stirred Et₂O soln (15 ml) of triphenylmethylenephosphorane (prepared from 360 mg of methyltriphenylphosphonium iodide and 0·3 ml of 2·6 M butyllithium in pentane). After 21 hr at room temp, the product was isolated and purified by column chromatography and preparative TLC. The ent- $[3\beta^{-3}H]$ kaur-16-ene (3b. 7 mg. 7·2× 10^{-4} dpm) thus obtained was identified by TLC and PMR, spectral comparison. Admixture of this material with ent- $[17^{-4}C]$

¹⁴C]kaur-16-ene gave the doubly-labelled compound (17-¹⁴C-labelled 30. 27 mg. $^{3}H = 1.0 \times 10^{7}$ dpm/mg. $^{14}C = 6.7 \times 10^{6}$ dpm/mg. $^{3}H: ^{14}C = 15\cdot0$). This showed only a single radioactive spot corresponding with 3a on TLC (Si gel-AgNO₃; petrol-CHCl₃, 4:1). An aliquot was heated in C₆H₆ under reflux with a few crystals of I₂ for $5\frac{1}{2}$ hr. After cooling, the soln was diluted with Et₂O, washed with aq. Na₂S₂O₃ and H₂O, dried and evaporated. The product showed 2 radioactive spots corresponding to *ent*-kaur-16-ene and *ent*-kaur-15-ene using the same TLC system as above. The material extracted from the 2 radioactive zones had $^{3}H: ^{14}C$ ratios of 15·3 and 15·6 respectively.

Metabolism of cnt-[3β-3H.17-14C]kaur-16-ene (3b). Half of the sample of ent-[3β-3H.17-14C]kaur-16-ene (13:5 mg) was added in EtOH (1 ml) to a fermentation of G. fijikuroi which had exhausted the inorganic nitrogen. After $4\frac{1}{2}$ days, the acidic fraction was recovered from the filtrate of the culture and subjected to methylation (CH₃N₃). Chromatography on Al₂O₃ then gave methyl [3γ-3H.17-14C] GA. (17-14C labelled methyl ester of 4b. 17 mg. 3 H = $2\cdot0\times10^{6}$ dpm/mg, $^{-14}$ C = $1\cdot4\times10^{5}$ dpm/mg, 3 H: 14 C = $1\cdot4\cdot6$) which was identified by TLC and NMR comparison. After dilution with unlabelled methyl GA (101 mg) the sp act and isotope ratios were essentially unchanged during 3 crystallizations from EtOAc-petrol (3 H = $^{1\cdot5}$ 1 × 10^{4} dpm/mg, 14 C = $^{1\cdot1}$ 1 × $^{10^{3}}$ dpm/mg, 3 H: $^{1\cdot4}$ C = $^{1\cdot4\cdot1}$ 1.

Oxidation of the metabolite methyl ester. The $3\times$ crystallized Me ester (20 mg) from the above metabolism was stirred and heated under reflux with MnO₂ (215 mg) in CHCl₃ (12 ml) for 20 hr [21]. The product was purified by preparative TLC (Si gel. CHCl₃-petrol-C₆H₆-HOAc. 10:4:4:1). The 3-keto compound (11. 11 mg) thus obtained was diluted with the unlabelled substance (65 mg) and crystallized from EtOAcpetrol, a constant sp act and isotope ratio was reached after 1 crystallization (3 H = 51 dpm/mg. 14 C = 118 cpm/mg. 3 H: 14 C = 0·43).

Acknowledgement—This work was supported in part by a grant from the Australian Research Grants Committee.

REFERENCES

- 1. Cross. B. E. (1968) Progr. in Phytochemistry 1, 195.
- MacMillan, J. (1971) in Aspects of Terpenoid Chemistry and Biochemistry (Goodwin, T. W. Ed.) p. 153. Academic Press. London.
- 3. Ruzicka, L. (1963) Pure Appl Chem. 6, 493.
- Cornforth, J. W., Cornforth, R. H., Donninger, C. and Popjak, G. (1966) Proc. Roy. Soc. B 163, 492.
- Hanson, J. R. and White, A. F. (1969) J. Chem. Soc. (C), 981
- Jefferies, P. R. and Retallack, R. W. (1968) Australian J. Chem. 21 1311.
- Helmkamp, G. K. and Rickborn, B. F. (1957) J. Org. Chem 22, 479.
- 6. Caspi. F. and Varma. K. R. (1968) J. Org. Chem. 33, 2181.
- Corey, F. J., Howell, M. G., Boston, A., Young, R. L. and Sneen, R. A. (1956) J. Am. Chem. Soc. 78, 5036.
- Briggs, L. H., Cain, B. F., Cambie, R. C., Davies, B. R. and Rutledge, P. S. (1962) J. Chem. Soc. 1850.
- Bell, R. E. and Ireland, R. F. (1963) Tetrahedron Letters 269.
- Beukers, R., Marx, A. F. and Zuidweg, M. H. J. (1972) in *Drug Design* (Ariens, F. J. Fd.) Vol. 3, p. t. Academic Press, London.

- 13. Bentley, R. (1970) Molecular Asymmetry in Biology Vol 2. (a) p. 259. (b) p. 274, Academic Press, London.
- 14. Bruce, I. T. and Kirby, G. W. (1968) Chem. Commun. 207.
- 15. Tschesche, R. and Kleff, V. (1973) Phytochemistry 12, 2375.
- Birch, A. J., Rickards, R. W., Smith, H., Harris, A. and Whalley, W. B. (1959) Tetrahedron 7, 241.
- Richards, J. H. and Hendrickson, J. B. (1964) The Biosynthesis of Steroids, Terpenes and Acetogenins, W. A. Benjamin, New York.
- Arigoni, D. (1960) in Steric Aspects of the Chemistry and Biochemistry of Natural Products (Grant, J. K. and Klyne, W. Eds.) p. 32, University Press, Cambridge.
- Bakker, H. J., Cook, I. F., Jefferies, P. R. and Knox, J. R. (1974) Tetrahedron 30, 3631.
- Henrick, C. A. and Jefferies, P. R. (1964) Australian J. Chem. 17, 915.
- Mori, K., Shiozaki, M., Itaya, N., Matsui, M. and Sumiki, Y. (1969) *Tetrahedron* 25, 1316.